

Operation of Aquaponic Systems

TRAINING

Procedures for integrated fish and plant production

Theory

Operation of Aquaponic Systems

Aquaponic =

ecologically worthwhile combination of fish farming and plant cultivation in a closed water cycle

Topics of the TRAINING:

- FISH
- WATER
- PLANTS

1. Topic: FISH

- 1.1 Relevance of Fish
- 1.2 Body Structure
- 1.3 Internal Organs
- 1.4 Fish Skin
- 1.5 Bloodstream
- 1.6 Respiration of Fish
- 1.7 Nutrition and Feeding

1.1 Relevance of Fish (I)

- habitat: water (71 % of the earth's surface)
- major vertebrate group with approx. 25.000 various species
 - 1/5 live in freshwater and
 - 4/5 in saltwater
- classification of fish to 3 subgroups

jawless fish (Agnathans)	jaw fish	
	cartilaginous fish	bony fish
Their long eel like body has no limbs, scales, skull, bones and jaw.	They have a cartilaginous skeleton, rough skin, gills without protective flaps and no swim bladder.	Their bodies have a bone skeleton, scales, gills with protecting bony cutaneous flap and a swim bladder.
e.g.: lamprey	e.g.: sharks, rays	most species e.g.: eel, salmon, catfish, perch carps, whitings

1.1 Relevance of Fish (II)

Fish is an essential element of aquatic ecosystems within the framework of food chains and webs.

1.1 Relevance if Fish (III)

- Fish is an essential part of human nutrition, because their meat is rich in ...
 - valuable protein,
 - unsaturated fatty acids,
 - vitamins and minerals (trace elements)

1.2 Body Structure (I)

 Due to the influence of various habitats and forms of behavior body structures were developed.

1.2 Body Structure (II)

division into

- 1 head (snout to the end of gill covers)
- 2 torso (end of gill covers to anus)
- 3 tail (anus to the end of caudal fin)

1.2 Body Structure (III)

- paired and unpaired fins for swimming and steerage
 - unpaired (a) dorsal fin (steer)
 - (b) bold fin
 - (c) caudal fin (impetus)
 - (f) anal fin (steerage)
 - paired (d) pectoral fin (control, movement, braking, balance, tactile perception)
 - (e) ventral fin (steerage)

musculature amounts to about 30 ... 50 %
 of body mass = edible part

1.3 Internal Organs

behind the head and beneath the spine the body cavity contains...

- heart (bloodstream)
- liver (digestive gland and storage organ)
- digestive tract (digestion)
- genitalia (reproduction)
- swim bladder (balanced state)
- kidney (blood-forming organ, secretion of waste products)
- spleen (degradation and conservation of blood components)

1.4 Fish Skin (I)

- major organ
- surrounds entire body and partly enables oxygen uptake
- lower skin layer = cutis
 - nerves and blood vessels
 - anchorages for the scales
 - pigment cells
 - lateral line (perception of currents and water pressure changes)

1.4 Fish Skin (II)

- epidermis = with mucous glands for the formation of the mucosa:
 - mucosa forms the barrier layer to the surrounding water
 - reduction of friction
 - quick wound closure
 - protection from parasites, bacteria and chemical influences
 - delivery of kind's scent, repellents

Only touch live fish with wet hands or wet clothes!

1.5 Bloodstream

- closed blood circulation
- fine veins run through the whole body
- by the pumping action of the heart the circulation is maintained
- blood = transportation

@ IBAU / PRO ARKADES, 2011

- bonding and distribution of O₂
 on the basis of gills
- bonding and transport of waste products of metabolism (CO₂, NH₄⁺) to the gills

projekt sponsored by:

 Before being eaten, fish have to bleed by spearing through the heart or severing veins between heart and gill!

1.6 Respiration of Fish (I)

- forms of respiration: gill breathing, cutaneous respiration, intestinal respiration
- gill = most important respiratory organ
 - located on both sides at the end of the head under the gill covers
 - each side with 4 branchial cysts, on each 2 rows with many gill lamellas (skin flap: large-surface, well supplied with blood)

gill breathing

- 1. sucking of respiratory water: mouth open, gill slit closed
 (O₂ is bound to blood in gill lamellas)
- 2. emitting of respiratory water: water is pressed along the gill lamellas trough gill slit (emission of metabolic waste products to water)

1.7 Respiration of Fish (II)

gills are very sensitive to dirt and damage

- in healthy fish:
 - gills are colored bright red

- in sick fish or in case of bad water quality:
 - swollen gills
 - increased mucus secretion
 - · yellow or grey discoloration

1.8 Nutrition and Feeding (I)

- an adequate nutrition of the fish is the basic requirement for health and healthy growth
 - usage of dry food for nutrition / feeding in intensive fish-farming
 - dry fish food contains proteins, fat, carbohydrates, vitamins and minerals → quality of raw material is crucial for digestibility and water quality

1.8 Nutrition and Feeding (II)

- for weight gain per kg 1,0 ... 1,2 kg food is required
- cool and dry storage of the feedstuff; in case of mold growth feedstuff can not be reused
- only as much can feeding as fish are able to take up immediately (otherwise it spoils the water quality)
- best: automatic pendulum feeder
 - fish learn to nudge pendulum
 - fish only eat in case of appetite
 - no waste of feedstuff

2. Topic: WATER

- 2.1 Significance of Water in Aquaponics
- 2.2 Determining the Temperature
- 2.3 Determining the Oxygen Content
- 2.4 Determining the pH-Value
- 2.5 Determining the BOD₅
- 2.6 Determining the Ammonium
- 2.7 Fish Hygiene

2.1 Significance of Water in Aquaponics

- water = fish habitat
- property of water: solution of salts
 - significant to the nutrition of plants (nitrogen, phosphorus and potassium are attached to salts)
- property of water: solution of gases
 - dependent on temperature, pressure and pH-value
- pH-value: acidic, neutral or basic reaction of water
- water polluted with waste water is very turbid and contains many bacteria → inadequate O₂-supply to fish!

2.2 Determining the Temperature

- as the temperature increases, the metabolic activity and thereby the O₂-need of fish increases
- conditions:
 - best conditions for Tilapia in the range of 24 ... 30 °C
 - requirements: O₂-supply and accurate feeding
 - avoidance of sudden temperature changes:
 approximation of max. 2 °C per day
 - water temperature influences life processes, effects of other environmental factors as well as resistance of fish to stress and pathogens
 - significantly increased or decreased water temperature or extreme temperature changes can cause stress, damages and even lead to fish's death
- determining the temperature by thermometer

2.3 Determining the Oxygen Content (I)

- oxygen (O₂) = principal respiratory gas for fishes
- O₂ for plants
 - plants need O₂ for radical respiration
 - a good O₂ supply is increasing the ionic and nutrient uptake of the roots
- amount of oxygen is dissolved in dependence of temperature (mg/l)
- if lack of O₂ in water:
 - fish grow badly and sicken rapidly or suffocate
- O₂ on 2 different ways in water:
 - photosynthesis of the water plants (nutrients and CO₂ from water to O₂ and biomass)
 → direct solution of O₂ in water
 - O₂ via contact of air with water
 - additional injection of air
 - spraying water by pumping
 - the greater the contact area or longer the contact time, the greater the O₂ -yield

2.3 Determining the Oxygen Content (II)

- detection with rapid test
 - optimal: values around 7 mg/l (O₂ content in the upper part of solvency → optimal O₂ –supply of fish)
 - critical: values below 2 mg/l
- in case of inadequate O₂-content fish come to the water surface and practice "emergency respiration"!
- activity in case of O₂-deficiency:
 - discontinue feeding
 - aeration of water
 - supply of fresh water

2.4 Determining the pH-Value

 optimum conditions for development and growth of fish is in a pH-value range from 6,0 to 8,5

pH-value detection by rapid test

2.5 Determining the BOD₅

- BOD = biological oxygen demand
- BOD_5 = amount of O_2 in mg/l, which is consumed in 5 days by bacteria and other water organisms at a temperature of 20 °C
- the higher the value, the more the water is polluted
- good conditions for Tilapia at values lower than 15 mg/l

For improving the conditions use fresh water!

difference of the values results in the BOD₅

2.6 Determining the Ammonium (I)

ammonium (NH₄⁺) = waste product of the digestion, dissolved in water

conversion of nitrogen

food remains, digestion products, dead organisms

NH₄* + OH = NH₃ + H₂O

< pH 7 >

- NH₄⁺ higher than 5 mg/l: harmful to fish
- NH₃ = ammonia = fish toxic: optimal < 0,01 mg/l
- attention: as NH₃-content in water increases the excretion of metabolic waste products via the gills is blocked
 - → ammonia toxicity!
 - → heavy damages of gills!

(toxicity increases with high pH-values)

projekt sponsored by:

2.6 Determining the Ammonium (II)

 determining by rapid test (NH₄⁺, nitrite and nitrate)

critical values of NH₄⁺ induce:

- decline of food uptake
- swelling of the gills and high mucus secretion
- several gill lamellas become white and die!

counter measure:

- interrupt feeding
- offering fresh water
- increase of the admission water flow of the hydroponic

2.7 Fish Hygiene (I)

environmental-related diseases

- gas blowing illness:
 - to much air can be entered in water (e.g. by pumping) in case of aerating the water (keep air injection depths below 1,5 m)
 - in case of gas over saturation: lot of gas, esp. nitrogen intrudes into fish.
 - in case of gas surge decompression sickness

2.7 Fish Hygiene (II)

environmental-related diseases

- effect of carbonic acid and pH-value:
 - large deviations of the neutral range (pH 7) may induce heavy damages, especially of the gills
 - acid disease: from pH < 5 greyish membrane and browning of the gills
 - alkali disease: from pH > 9,5 heavy mucus secretion and alkali burn of the gills

2.7 Fish Hygiene (III)

environmental-related diseases

- intoxication due to nitrogen compounds
 - in particular by ammonia (NH₃) and nitrous acid (HNO₂)
 - as the NH₃-content in the water increases, the excretion of metabolic waste products over the gills is blocked → ammonia toxicity! → heavy damage of the gills! (toxicity is increased by high pH-values)
 - as the pH-values decreases, HNO₂ increases → interrupts the oxygen transport in the blood → shortness of breath!

threshold values:

 $NH_2 = < 0.01 \text{ mg/l}$

 $HNO_2 = < 0,0002 \text{ mg/l}$

2.7 Fish Hygiene (IV)

- damage of the biological epidemic balance
- pollution with organic substances
- toxicity and pollution arising from impurities (heavy metals, insecticides, hormones)

projekt sponsored by:

3. Topic: PLANTS

3.1 Crop Requirements (I)

- utilization of nutrients of the fish waste water (nitrate, phosphate, ...) to build up biomass
- biomass = proteins, fats, carbohydrates, fibers
 - = food basis to all animals

- plant growth mostly depends on light, temperature, CO₂ and water supply
- the plants are fed with water and nutrients by roots

3.1 Crop Requirements (II)

- plant production is possible without ground / soil / substrates
- for plant cultivation plants are supplied with nutrient solution on a sealed bed (with sheet)

→ HYDROPONIC

 to achieve a fertilization, the nitrogen-content effect of the fish waste water has to be among 50 mg/l

3.2 Hydroponic (I)

- fish food contains N und P
- only half of the feeding is bound in fish's own substances → the remainder reaches the water and deteriorates the water quality

combination of aquaculture (fish farming) and hydroponic (plant cultivation in water without ground)

3.2 Hydroponic (II)

 useful plants planted in a filter bed detract enriched and converted nutrients from water (recycling of nutrients of the fish waste water)

- 1 water circulation combines fish farming with cultivation of useful plants
- saving valuable water
- no formation of waste water and pollutants
- effective nutrient recycling, no eutrophication of waterbodies

3.3 Plant Cultivation (I)

- preparation of seedlings of the desired sort in a free-of-ground cultivation (equipment is available on the market)
- put into sealed plant beds

3.3 Plant Cultivation (II)

use of granulated lava on the sheet

- for protecting the sheet
- Support of plant roots
- improvement to water quality (natural filter)

3.3 Plant Cultivation (III)

examples of plant species

ผักคาวตอง (Houttuynia Cordata Thumb)

ผักแผว Globe Amaranth

ผักแขยง Finger grass

ผักกาดหอม Lactuca sativa

B. r. chinensis

Roses

Lilies

